天文望远镜(Astronomical Telescope)是观测天体的重要工具,可以毫不夸张地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。
目录
1609年,意大利科学家伽利略听说这个发明以后,立刻制作了他自己的望远镜,并且用来观测星空。自此,第一台天文望远镜诞生了。伽利略凭借望远镜观测到了太阳黑子、月球环形山、木星的卫星(伽利略卫星)、金星的盈亏等现象,这些现象有力地支持了哥白尼的日心说。伽利略的望远镜利用光的折射原理制成,所以叫做折射镜。
1663年,苏格兰天文学家格里高利利用光的反射原理制成格里高利式反射镜,但是由于制作工艺不成熟而未能流行。1667年,英国科学家牛顿稍微改进了格里高利的想法,制成了牛顿式反射镜,其口径只有2.5厘米,但是放大倍率超过30倍,还消除了折射望远镜的色差,这使得它非常实用。 1672年,法国人卡塞格林利用凹面镜和凸面镜,设计了现在最常用的卡赛格林式反射镜。这种望远镜焦距长而镜身短,放大倍率大,图象清晰;既可用于研究小视场内的天体,又可用以拍摄大面积的天体。哈勃望远镜采用的就是这种反射望远镜。
1781年英国天文学家赫歇尔兄妹(W.Herschel和C.Herschel)用自制的15厘米口径反射镜发现了天王星。此后,天文学家给望远镜加装了许多功能,使之具备光谱分析等能力。1862年,美国天文学家克拉克父子(A.Clark和A.G.Clark)制造了47厘米口径折射镜,拍到了天狼星伴星的图片。1908年美国天文学家海尔领导建成了1.53米口径反射镜,拍到了天狼星伴星的光谱。1948年,海尔望远镜落成,其5.08米的口径足以观测分析遥远天体的距离和视向速度。
1931年,德国光学家施密特制成施密特式望远镜,1941年苏俄天文学家马克苏托夫制成马克苏托夫-卡塞格林式折返镜,丰富了望远镜的种类。
在近现代和现代,天文望远镜已经不局限于光学波段了。1932年,美国无线电工程师探测到了来自银河系中心的射电辐射,标志着射电天文学的诞生。1957年人造卫星上天以后,空间天文望远镜蓬勃发展。新世纪以来,中微子、暗物质、引力波等新型望远镜方兴未艾。现在,天体发出的许多信息都已经成为天文学家的眼底之物,人类的视野越来越广阔了。
地面光学观测仍是主要手段用于绝大多数处于凝聚态的天体(恒星等
),其温度从数千度到数万度,辐射集中于光学波段。
携带大量天体物理信息的谱线,主要集中于可见区;
大气在可见区有良好的透射;
有悠久的历史和丰富的经验。
为什么说问“望远镜能看多远”是错误的?
我们的肉眼就是一台光学仪器,肉眼可以看到220万光年以外的仙女座大星云,但是看不见距离地球最近的太阳系外恒星比邻星(4.2光年)。相信大家已经体会到了吧,说一个光学仪器能看多远是没有意义的,只能说看多清。
口径(D)是物镜的直径,口径大小决定了光学系统的分辨力。根据瑞利判据,望远镜的分辨力和口径相关。口径越大,分辨力越强。焦距(f)是望远镜物镜到焦点的距离,决定了光学系统在像平面上成像的大小。对于天文摄影来说,物距(被观测天体的距离)可以认为是无穷远,因此像距就等于焦距,所以像平面也被称为焦平面。望远镜焦距越长,焦平面上成的像越大;反之则越小。焦比(F)是望远镜的焦距除以望远镜的通光口径,即F=f/D,它决定焦平面上单位时间内单位面积接收到的光子数量。也被作为曝光效率的重要指标。焦比越小,焦平面上单位面积接收到的光子就越多;反之则越少。也就是说焦比越小的镜子曝光效率越高。
像差是光学系统成像不完善的描述。具体有球差、色差、彗差、像散、场曲、畸变等。球差存在于球面反射镜的光学系统中,平行于光轴入射的光线经球面透镜或反射镜后不严格地汇聚于一点,远离光轴的光线汇聚的位置会更加靠近镜子。目前利用组合透镜和把球面改为抛物面可以改善球差。色差是折射光学系统最明显的像差,它形成于光的色散,这使得星光会出现多种颜色,影响观测。利用多片透镜组合的复消色差系统可以降低色差的程度。彗差是抛物面反射式光学系统中最明显的像差,它是因为倾斜于光轴的入射光无法汇聚一点导致的,这会使得星光看起来像一颗彗星。使用彗差修正镜组可以消除彗差。像散是倾斜于光轴的光出现垂直振动的光波和水平振动的光波不交汇于一点的现象。越远离视场边缘,像散越严重。安装平场修正镜组可以修正像散。场曲指远离光轴的光线汇聚于一个弯曲的球面上的现象,这会使得成像时出现失焦。畸变指轴上物点与视场边缘具有不同的放大率,物和像因此不完全相似的现象。
伽利略式望远镜(第一台天文望远镜)
望远镜起源于眼镜。人类在约700年前开始使用眼镜。公元1300年前后,意大利人开始用凸透镜制作老花镜。公元1450年左右,近视眼镜也出现了。1608年,荷兰眼镜制造商汉斯·里帕希(H.Lippershey)的一个学徒偶然发现,将两块透镜叠在一起可以清楚看到远处的东西。
1609年,意大利科学家伽利略听说这个发明以后,制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,立刻制作了他自己的望远镜,并且用来观测星空。自此,第一台天文望远镜诞生了。伽利略凭借望远镜观测到了太阳黑子、月球环形山、木星的卫星(伽利略卫星)、金星的盈亏等现象,这些现象有力地支持了哥白尼的日心说。伽利略的望远镜利用光的折射原理制成,所以叫做折射镜。这种光学系统称为伽利略式望远镜。
需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这
势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。
折射式的发展
1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年在美国叶凯士天文台建成的口径102厘米望远镜和1886年在德国里克天文台建成的口径91厘米望远镜。
折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。
望远镜,通过光学成像的方法使人看到远处的物体,并且显得大而近的一种仪器。望远距离、放大倍率、清析度为望远镜重要因素。
1.伽利略式望远镜
1609年,伽利略制作了一架口径4.2厘米,长约12厘米的望远镜。
2.开普勒式望远镜
现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。
3.施密特式折反射望远镜
折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。
4.马克苏托夫式
1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。
由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。
5.欧洲甚大望远镜
欧洲南方天文台自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜(VLT)。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动光学系统支撑,指向精度为1″,跟踪精度为0.05″,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
6.双子望远镜
双子望远镜(GEMINI)是以美国为
主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。
7.日本昴星团望远镜
这是一台8米口径的光学/红外望远镜(SUBARU)。它有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成象质量;二是可实现0.1″的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。此望远镜采用Serrurier桁架,可使主镜框与副镜框在移动中保持平行。大天区多目标光纤光谱望远镜LAMOST(郭守敬)这是中国已建成的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。
它的技术特色是:
2.球面主镜和反射镜均采用拼接技术。
3.多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。
8.射电望远镜
第二次世界大战结束后,射电天文学脱颖而出,射电望远镜为射电天文学的发展起了关键的作用,比如:六十年代天文学的四大发现,类星体,脉冲星,星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。射电望远镜的每一次长足的进步都会毫无例外地为射电天文学的发展树立一个里程碑。
英国曼彻斯特大学于1946年建造了直径为66.5米的固定式抛物面射电望远镜,1955年又建成了当时世界上最大的可转动抛物面射电望远镜;六十年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表面上的,不能转动,这是世界上最大的单孔径射电望远镜。
八十年代以来,欧洲的VLBI网(EVN),美国的VLBA阵,日本的空间VLBI(VSOP)相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。
中国科学院上海天文台和乌鲁木齐天文站的两架25米射电望远镜作为正式成员参加了美国的地球自转连续观测计划(CORE)和欧洲的甚长基线干涉网(EVN),这两个计划分别用于地球自转和高精度天体测量研究(CORE)和天体物理研究(EVN)。这种由各国射电望远镜联合进行长基线干涉观测的方式,起到了任何一个国家单独使用大望远镜都不能达到的效果。
9.哈勃空间望远镜
哈勃空间望远镜(HST),这是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受到公众注目的一项。它筹建于1978年,设计历时7年,1989年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使HST性能达到甚至超过了原先设计的目标,观测结果表明,它的分辨率比地面的大型望远镜高出几十倍。
HST对国际天文学界的发展有非常重要的影响。
10.空间天文望远镜
"下一代大型空间望远镜"(NGST)和"空间干涉测量飞行任务"(SIM)是NASA"起源计划"的关键项目,用于探索在宇宙最早期形成的第一批星系和星团。其中,NGST是大孔径被动制冷望远镜,口径在4~8米之间,是HST和SIRTF(红外空间望远镜)的后续项目。它强大的观测能力特别体现在光学、近红外和中红外的大视场、衍射限成图方面。将运行于近地轨道的SIM采用迈克尔干涉方案,提供毫角秒级精度的恒星的精密绝对定位测量,同时由于具有综合成图能力,能产生高分辨率的图象,所以可以用于实现搜索其它行星等科学目的。
欧洲南方天文台甚大望远镜(VLT),由4台口径8.2米的望远镜组成,光学系统均为里奇-克莱琴式反射望远镜(R-C式,卡塞格林式的变种),位于智利北部的帕瑞纳天文台。四台望远镜既可单独观测,也可组成光学干涉阵列观测。天文台在沙漠之中,大气视宁度极佳,近些年取得了很多观测成果。
凯克望远镜(Keck),由两台口径10米的望远镜组成,位于夏威夷莫纳克亚山山顶。光学系统为R-C式反射望远镜。两台望远镜采用薄镜镶拼技术,使得主镜质量大大降低,它还具有自适应光学系统。这些技术使得其成为最成功的望远镜之一。
双子星望远镜(GEMINI),由两台口径8米的望远镜组成,一台位于夏威夷莫纳克亚山,一台位于智利拉西亚北面的沙漠,以进行全天系统观测。光学系统为R-C式反射望远镜,其主镜采用主动光学技术。
霍比-埃伯利望远镜(HET),由91块直径1米的正六边形玻璃镶拼而成,总口径11米,等效口径9.2米,位于美国德克萨斯州麦克唐纳天文台。光学系统为反射式。HET望远镜是光谱巡天用望远镜.光轴的天顶角固定不变,为35°,即主镜不可上下移动;方位可作360°转动,但只用于改换观测天区,一次观测中望远镜是固定不动的。焦面装置备有球差改正器,每次观测只用到主镜的一部分。可观测天区为赤纬-10°到75°,但对不同赤纬的星可观测的时段不同,跟踪时间长短也可能不同,为45分钟到2.5小时。
日本国家天文台昴星团望远镜(SUBARU),由一台口径8.2米的望远镜组成,位于夏威夷莫纳克亚山上。观测波段可至中红外。
大天区多目标光纤光谱望远镜(LAMOST,也作郭守敬望远镜),由一台有效口径4米的望远镜组成,光学系统为施密特式,位于中国科学院国家天文台兴隆观测站。它应用主动光学技术,使它成为大口径兼大视场光学望远镜的世界之最。在曝光1.5小时内可以观测到暗达20.5等的天体。而由于它视场达5°,在焦面上可放置四千根光纤,将遥远天体的光分别传输到多台光谱仪中,同时获得它们的光谱,是世界上光谱获取率最高的望远镜。
绿湾射电天文望远镜(GBT),世界上最大的可移动射电望远镜之一。其抛物面型天线尺寸为100米x110米,它的这种不对称形状能防止支撑结构使其2000多块铝制面板镶嵌的镜面变得模糊不清。绿岸望远镜重达7300吨,高148米,但是十分灵活,可实时跟踪目标,还能快速变焦,适应不同观测对象。
国际低频射电望远镜阵列(LOFAR)是目前最大的低频射电望远镜阵列,由散布在多个欧洲国家的大量(约20000个)单独天线组成的望远镜阵列。这些天线借助高速网络和欧洲最强大超算之一“COBALT”相关器形成一个占地30万平方米的射电望远镜
阿塔卡马大型毫米波/亚毫米波阵列(ALMA),由54台口径12米和12台口径7米的射电望远镜组成,位于智利北部阿塔卡马沙漠。66座天线既可以协同工作,也可以分别观测。所有天线取得信号经由专用的超级计算机处理。这些天线可用不同的配置法排成阵列,天线间的距离变化多样,最短可以是150米,最长可以到16公里。
日本国立天文台野边山观测所(NRO),由一台口径45米的毫米波望远镜和6台口径10米的毫米波望远镜组成,位于日本长野县野边山。
500米口径球面射电望远镜(FAST),由一台口径500米的球面射电望远镜组成,位于贵州省黔南,是由中国科学院国家天文台主导建设,具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜。截止到2019年7月19日,这个世界上最大的射电望远镜已经发现了125颗优质脉冲星候选体,确认了86颗。 FAST不仅推动了我国天文学的发展,还为世界天文学研究、高科技领域研究带来了巨大的推动力。
阿雷西博天文台(ART),由一台口径300米的球面射电望远镜组成,位于美国波多黎各自由邦。它曾是世界上最大的单口径射电望远镜,不仅能够接受电波,还能发射电波。过去57年来,世界各地的科学家一直使用阿雷西博望远镜研究遥远行星,发现潜在的危险小行星并寻找可能存在的地外生命。从太阳系小天体到遥远的太空深处的脉冲星,阿雷西博望远镜曾见证众多“人类第一次发现”。 2020年12月1日,阿雷西博射电望远镜坍塌阿雷西博望远镜坍塌是因为3个支撑塔全部断裂,重达900吨的接收平台直接坠落到望远镜的反射盘上。天线被砸坏,望远镜已无修复可能。
中微子是组成自然界的最基本的粒子之一。它个头小、不带电,可自由穿过地球,质量非常轻,以接近光速运动,与其他物质的相互作用十分微弱,号称宇宙间的“隐身人”。科学界从预言它的存在到发现它,用了20多年的时间。中微子包含天体的大量信息。由于与物质作用十分微弱,中微子天文台通常十分巨大,且建于地下。
冰立方中微子天文台(IceCube),由数千个中微子探测器和切伦科夫探测器组成,位于南极洲冰层下约2.4公里处,分布范围超过一立方公里。中微子与原子相撞产生的粒子名叫μ介子,生成的蓝色光束被称作“切伦科夫辐射”。由于南极冰的透明度极高,位于冰中的光学传感器能发现这种蓝光。目前已经冰立方天文台已作出许多科学成果。
超级神冈探测器,由约一万个中微子探测器组成,位于日本神冈一座废弃砷矿中。主结构——高41米、直径39米的水箱——在深达1000米的地下,内盛5万吨的超纯水,内壁安装数万个光电倍增管,用于观测切伦科夫辐射。其可接受太阳中微子,并解决了中微子缺失问题,作出了很多科学成果。
江门地下中微子观测站(JUNO),是一个现正在广东省江门市建造的多物理目标的综合性实验观测站。江门中微子实验除了可以利用反应堆中微子来确定中微子的质量顺序和精确测量中微子混合参数,还可以探测太阳中微子、来自银河系及邻近星系的超新星爆发产生的中微子和超新星背景中微子,对研究恒星演化和超新星爆发机制具有重要意义。另一方面,超新星爆发与众多天体物理学和宇宙学的基本问题紧密相关,如大质量恒星的演化、中子星和黑洞的形成、重核元素的合成、伽马射线暴和高能宇宙线的起源等。
引力波是指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,这种波以引力辐射的形式传输能量。在1916年,爱因斯坦基于广义相对论预言了引力波的存在。引力波的存在是广义相对论洛伦兹不变性的结果,因为它引入了相互作用的传播速度有限的概念。相比之下,引力波不能够存在于牛顿的经典引力理论当中,因为牛顿的经典理论假设物质的相互作用传播是速度无限的。科学家们已经利用更为灵敏的探测器证实了引力波的存在。最为灵敏的探测器是LIGO,更多的空间引力波天文台(中国的中国科学院太极计划,和中山大学的天琴计划)正在筹划当中。
激光干涉引力波天文台(LIGO),由两个干涉仪组成,每一个都带有两个4千米长的臂并组成L型,分别位于相距3000千米的美国华盛顿州和路易斯安娜州。每个臂由直径为1.2米的真空钢管组成,一旦引力波闯入地球,引发时空震荡,干涉臂距离就会变动,这将让干涉条纹变化,依此确定引力波强度。 2017年8月17日,它首次发现双中子星并合引力波事件。
宇宙射线
宇宙射线是来自外太空的带电高能次原子粒子。它们可能会产生二次粒子穿透地球的大气层和表面。主要的初级宇宙射线(来自深太空与大气层撞击的粒子)成分在地球上一般都是稳定的粒子,像是质子、原子核、或电子。但是,有非常少的比例是稳定的反物质粒子,像是正电子或反质子,这剩余的小部分是研究的活跃领域。
大约89%的宇宙射线是单纯的质子,10%是氦原子核(即α粒子),还有1%是重元素。这些原子核构成宇宙线的99%。孤独的电子(像是β粒子,虽然来源仍不清楚),构成其余1%的绝大部分;γ射线和超高能中微子只占极小的一部分。这些粒子的来源可能是太阳(或其它恒星)或来自遥远的可见宇宙,由一些还未知的物理机制产生的。宇宙射线的能量可以超过10eV,远超过地球上的粒子加速器可以达到的10至10 eV。
LHAASO完工的缪子探测器阵列。
高海拔宇宙线观测站(LHAASO)是世界上正在建设的海拔最高(4410米)、规模最大(2040亩)、灵敏度最强的宇宙射线探测装置,位于中国四川省稻城县海子山。观测站分为四个部分:电磁粒子探测阵列、缪子探测器阵列、水切伦科夫探测器阵列和广角切伦科夫探测器阵列。2016年7月开始基础设施建设,2020年12月6日缪子探测器阵列完工
我们知道,在地球表面有一层浓厚的大气,由于地球大气中各种粒子与天体辐射
的相互作用(主要是吸收和反射),使得大部分波段范围内的天体辐射无法到达地面。人们把能到达地面的波段形象地称为"大气窗口",这种"窗口"有三个。光学窗口:这是最重要的一个窗口,波长在300~700纳米之间,包括了可见光波段(400~700纳米),光学望远镜一直是地面天文观测的主要工具。
红外窗口:红外波段的范围在0.7~1000微米之间,由于地球大气中不同分子吸收红外线波长不一致,造成红外波段的情况比较复杂。对于天文研究常用的有七个红外窗口。
射电窗口:射电波段是指波长大于1毫米的电磁波。大气对射电波段也有少量的吸收,但在40毫米~30米的范围内大气几乎是完全透明的,我们一般把1毫米~30米的范围称为射电窗口。
最早的红外观测可以追溯到十八世纪末。但是,由于地球大气的吸收和散射造成在地面进行的红外观测只局限于几个近红外窗口,要获得更多红外波段的信息,就必须进行空间红外观测。现代的红外天文观测兴盛于十九世纪六、七十年代,当时是采用高空气球和飞机运载的红外望远镜或探测器进行观测。
1983年1月23日由美英荷联合发射了第一颗红外天文卫星IRAS。其主体是一个口径为57厘米的望远镜,主要从事巡天工作。IRAS的成功极大地推动了红外天文在各个层次的发展。直到现在,IRAS的观测源仍然是天文学家研究的热点目标。
1995年11月17日由欧洲、美国和日本合作的红外空间天文台(ISO)发射升空并进入预定轨道。ISO的主体是一个口径为60厘米的R-C式望远镜,它的功能和性能均比IRAS有许多提高,它携带了四台观测仪器,分别实现成象、偏振、分光、光栅分光、F-P干涉分光、测光等功能。与IRAS相比,ISO从近红外到远红外,更宽的波段范围;有更高的空间分辨率;更高的灵敏度(约为IRAS的100倍);以及更多的功能。
ISO的实际工作寿命为30个月,对目标进行定点观测(IRAS的观测是巡天观测),这能有的放矢地解决天文学家提出的问题。预计在今后的几年中,以ISO数据为基础的研究将会成为天文学的热点之一。
从太阳系到宇宙大尺度红外望远镜与光学望远镜有许多相同或相似之处,因此可以对地面的光学望远镜进行一些改装,使它能同时也可从事红外观测。这样就可以用这些望远镜在月夜或白天进行红外观测,更大地发挥观测设备的效率。
紫外波段是介于X射线和可见光之间的频率范围,观测波段为3100~100埃。紫外观测要放在150公里的高度才能进行,以避开臭氧层和大气的吸收。第一次紫外观测是用气球将望远镜载上高空,以后用了火箭,航天飞机和卫星等空间技术才使紫外观测有了真正的发展。
紫外波段的观测在天体物理上有重要的意义。紫外波段是介于X射线和可见光之间的频率范围,在历史上紫外和可见光的划分界限在3900埃,当时的划分标准是肉眼能否看到。现代紫外天文学的观测波段为3100~100埃,和X射线相接,这是因为臭氧层对电磁波的吸收界限在这里。
1968年美国发射了OAO-2,之后欧洲也发射了TD-1A,它们的任务是对天空的紫外辐射作一般性的普查观测。被命名为哥白尼号的OAO-3于1972年发射升空,它携带了一架0.8米的紫外望远镜,正常运行了9年,观测了天体的950~3500埃的紫外谱。
1978年发射了国际紫外探测者(IUE),虽然其望远镜的口径比哥白尼号小,但检测灵敏度有了极大的提高。IUE的观测数据成为重要的天体物理研究资源。
1999年6月24日FUSE卫星发射升空,这是NASA的"起源计划"项目之一,其任务是要回答天文学有关宇宙演化的基本问题。
X射线辐射的波段范围是0.01-10纳米,其中波长较短(能量较高)的称为硬X射线,波长较长的称为软X射线。天体的X射线是根本无法到达地面的,因此只有在六十年代人造地球卫星上天后,天文学家才获得了重要的观测成果,X射线天文学才发展起来。早期主要是对太阳的X射线进行观测。
1962年6月,美国麻省理工学院的研究小组第一次发现来自天蝎座方向的强大X射线源,这使非太阳X射线天文学进入了较快的发展阶段。七十年代,高能天文台1号、2号两颗卫星发射成功,首次进行了X射线波段的巡天观测,使X射线的观测研究向前迈进了一大步,形成对X射线观测的热潮。进入八十年代以来,各国相继发射卫星,对X射线波段进行研究:
1987年日本的X射线探测卫星GINGA发射升空
1990年6月,伦琴X射线天文卫星(简称ROSAT)进入地球轨道,为研究工作取得大批重要的观测资料,它已基本完成预定的观测任务
1990年12月"哥伦比亚"号航天飞机将美国的"宽带X射线望远镜"带入太空进行了为期9天的观测
1993年2月,日本的"飞鸟"X射线探测卫星由火箭送入轨道
1996年美国发射了"X射线光度探测卫星"(XTE)
1999年7月23日美国成功发射了高等X射线天体物理设备(CHANDRA)中的一颗卫星,另一颗将在2000年发射
2000年日本也将发射一颗X射线的观测设备。
以上这些项目和计划表明,未来几年将会是一个X射线观测和研究的高潮。
γ射线比硬X射线的波长更短,能量更高,由于地球大气的吸收,γ射线天文观测只能通过高空气球和人造卫星搭载的仪器进行。
1991年,美国的康普顿(γ射线)空间天文台(ComptonGRO或CGRO)由航天飞机送入地球轨道。它的主要任务是进行γ波段的首次巡天观测,同时也对较强的宇宙γ射线源进行高灵敏度、高分辨率的成象、能谱测量和光变测量,取得了许多有重大科学价值的结果。
受到康普顿空间天文台成功的鼓舞,欧洲和美国的科研机构合作制订了一个新的γ射线望远镜计划-INTEGRAL,准备在2001年送入太空,它的上天将为康普顿空间天文台之后的γ射线天文学的进一步发展奠定基础。
图注:这是位于美国亚利桑那州葛理翰山大学国际天文台天文望远镜拍到的第一张宇宙天体图片,这是一个距离地球1.02亿光年的螺旋型星系。它是目前世界上最大的双目光学天文望远镜。
固定倍率的望远镜(也是最常见的望远镜)的表示方法:倍率x物镜口径(直径,mm),比如7x35表示该种望远镜的倍率为7倍,物镜口径35毫米;10×50表示该种望远镜的倍率为10倍,物镜口径为50毫米。
连续变倍望远镜规格的表示方法:连续变倍望远镜是用“最低倍率-最高倍率x物镜口径(直径mm)”来表示,如8-25x25表示该种望远镜的最低倍率是8倍、最高倍率是25倍、在8倍和25倍之间可以连续变换、口径是25毫米。
固定变倍望远镜的表示方法:低倍率/高倍率(/更高倍率)x物镜口径(直径mm),有时候也用 最低倍率-最高倍率x物镜口径(直径mm)的表示方法,例如15/30*80指倍率为15倍和30倍固定变倍、口径为80毫米的望远镜。
防水望远镜的表示方法:一般在望远镜型号的后面加WP(Water proof),如8X30WP指倍率为8倍,物镜口径为30毫米的防水望远镜。
广角望远镜的表示方法:一般在望远镜型号的后面加WA(Wide Angle),如7X35WA指倍率为7倍,物镜口径35毫米的广角望远镜。
一些经销商把前后两数字相乘的积当作望远镜的倍率来哄骗消费者是不道德的,更有一些经销商随意扩大两个数字来欺骗消费者,我曾经见过一款10x25的DCF望远镜,标注的规格竟是990x99990,天!990倍的、口径是99990mm的望远镜是什么概念?
望远镜的倍率:一架望远镜的倍率是指望远镜拉近物体的能力,如使用一具7倍的望远镜来观察物体,观察到的700米远的物体的效果和肉眼观察到的100米远的物体的效果是相似的(当然,由于环境的影响效果要差一些)。很多人总认为倍率越高越好,一些经销商和厂家也以虚假的高倍来吸引、欺骗消费者,市场上有些望远镜比如说口径80mm焦距900mm竟然标为990倍!实际上,一架望远镜的合理倍率是与望远镜的口径和观测方式相关的:口径大的,倍数可以适当高些,带支架的的可以比手持的高些。倍率越大,稳定性也就越差,观察视场就越小、越暗,其带来的抖动也大增加,呼吸的气流和空气的波动对其影响也就越大。手持观测的双筒望远镜,7-10倍之间是最合适的,最好不要超过12倍,如果望远镜的倍率超过12倍,那么手持观察将会很不方便。世界各国军用的望远镜也大多以6-10倍为主,如中国的军用望远镜主要是7倍和8倍的,这是因为清晰稳定的成像是非常重要的。
视场(Field of view)是指在一定的距离内观察到的范围的大小。视场越大,观测的范围就越宽广越舒适,视场一般用千米处视界(可观测的宽度)和换算成角度(angle of view)来表示,常见的有三种表示方法:一是直接用角度,如angle of view:9°;二是千米处的可视范围,如Field of view:158m/1000m;三是千码处英尺,实际上和第二种差不多,如Field of vies:288ft/1000y.一般来讲,口径越大,倍率越低,视场就越大,但目镜组的设计也很关键。
出瞳直径就是影像通过望远镜后在目镜上形成的光斑大小,出瞳直径可以用下面公式得出:物镜口径/倍率=出瞳直径。由此可以看出物镜越大、倍数越低,出瞳直径就越大。从理论上讲,出瞳直径越大,所观测到的景物就越明亮,有利于暗弱光线下的观测。因此在选购望远镜时应尽量选择出瞳直径大些的,那么是否越大越好呢?也不是,因为我们正常使用望远镜时大都在白天,这时人眼的瞳孔很小,只有2-3毫米左右,这时如果使用出瞳直径大的如4毫米以上的,则大部分有用光线并不被人眼吸收,反而浪费。人眼只有在黄昏或黑暗时瞳孔才能达到7毫米左右。因此一般情况下使用选择出瞳直径不低于3毫米的就可以了。所以出瞳直径又称为黄昏因数。
如果你注意观察的话,你会发现望远镜的物镜镜外会有不同的颜色,红色的、蓝色
的,还有绿色的、黄色的、紫色的等等,这就是平常所说的镀膜。那么镜片镀膜有什么作用呢?镜片镀膜的作用是为了防止光线在镜片上面反射的漫射光造成的薄雾般的白茫茫现象,养活反光,使透光率增加,增加色彩的对比度、鲜明度,提高观测效果。一般镀膜层越多、越深、越厚的,观赏效果越好,亮度越高。镀膜的颜色需根据光学材料及设计要求而定,镀膜越淡、反光越小越好,平常使用最多的蓝膜和红膜,蓝膜是一种传统的镀膜,红膜是从上个世纪上半期出现的。很多人认为红膜比蓝膜好,市场上有很多反光很强、亮闪闪的红膜望远镜,一些经销商把这种镀膜称为“红外线”“次红外线”“红宝石镀膜”等等,最后会告诉你这是全天候的、能在夜间观察的红外线夜视望远镜,请广大镜友千万不要上当。真正的红外线夜视仪是光电管成像,与望远镜结构和原理完全不同,白天不能使用,需要电源才能观察。其实当光线穿透玻璃时,将无可避免的造成一些反射而降低亮度,镀红膜后因为反射严重亮度降低更多,这类望远镜正常是在雪地上阳光强烈照耀刺眼时,降低亮度所使用,在正常情况下使用,蓝膜是比较好,绿色就更优秀的(好多名牌摄像机和照相机镜头都是采用镀蓝膜,就是这个道理)。
DCF、UCF、PCF是人们对望远镜型号的习惯称呼,DCF是指采用别汉棱镜的直筒式望远镜,UCF是指采用保罗棱镜的小型望远镜,也就是常说的小保罗,采用棱镜倒置式结构,PCF是指采用保罗棱镜的大型望远镜,也就是常说的大保罗。
当我们每次把望远镜从箱中取出安装或者大幅度移动时,都要重新调节两个镜的光轴平行,以便为观测时创造方便的环境。首先我们来说一下简单的操作方法:
1,主镜由物镜(最前面的镜片组)、调焦系统和目镜(末端的镜组)组成,在
镜筒上会标注主镜的焦距,以F表示,F600就是主镜的焦距是600毫米,主镜上会标注主镜的口径,80mm说明口径是80毫米,请注意,口径是决定望远镜性能的第一标准,口径越大越好。另外,天文望远镜的视野不会像双筒望远镜那么宽广,如果想看的面积广一点,可以选购F值大的目镜(如20mm,25mm,40mm),反之,看到的范围就会缩小(如8mm,12mm,4mm)。一般的家用天文望远镜所配备的目镜视野为1度(两个满月直径,就是说你的视场里能放进去两个满月)。调焦系统是调节清晰度的设备。
2,寻星镜是一件重要的附件,特别对新手而言,因为它的作用是寻找目标。那么为什么它能够寻找目标呢,这是相对而言的,上面我们说过,一般的望远镜视野为1度,而寻星镜则可以达到6-10度,所以大视场的寻星镜比主镜更容易寻找目标。我们从寻星镜的目镜看,能够看见视野中有一个十字丝,这就是定位的装置,怎么使用下面会讲到。寻星镜还有一个装备就是有三个螺丝,这是为了调节寻星镜的指向所用,下面会讲到。
3,手控器,极大方便了我们认识和寻找星体,输入当地的经纬度,让望远镜镜筒指北并水平。然后找一星,二星或者多星定位后,可以根据内置星体名称寻找恒星,行星,星云,星团,星座等.并且找到星体后能跟着星体移动.
1.调节主镜和寻星镜的光轴平行
将望远镜安装完毕后,首先我们选一处比较大的建筑目标,如烟囱,空调室外机等。不要管寻星镜,先选择望远镜配备的最大F值的目镜安装到主镜上(一般为20mm或者8mm),用主镜慢慢找准所看物体,这里用一个空调室外机上的标志做例子,我们选择大物体是为了让主镜能够很容易的找到。大的物体很好找,我们调节焦距系统使影像清晰起来,并让影像处于主镜视野中心,找到后,把脚架全部锁紧。注意,仔细的观察主镜里的影像,在脑子中把主镜视野画个十字平均,看看中心点是影像的什么部分。
2.调节寻星镜
主镜已经把影像定下,下面来调节寻星镜。转动寻星镜上的三个螺丝慢
慢的调节,把刚才在主镜中心的影像尽量的调节到寻星镜十字丝的中心,一定要耐心,这可能是最心急的时候。这里要注意,有时候我们确实把影像调到了中心,但是观察三个螺丝,有可能其中一个没有顶在寻星镜上,这说明这个调节不成功,只是碰巧而已,所以一定要观察三个螺丝要顶到镜筒上,哪怕是只碰到一点,这也为以后移动镜子不会影响寻星镜。当把影像调节到中心,光轴的调节工作大功告成。
3.以上两个环节的目的是为了让两只镜筒光轴平行,而不是观察某个体,一定要搞明白。
4.好了,两只镜的光轴平行了,我们就可以观测所有的物体。具体操作如下:
松开刚才锁死的脚架,慢慢的移动到观测物体的大致方位,要轻,否则寻星镜可能会晃动,前面的工作就白费了。移动到大致位置后,首先通过寻星镜内观察瞄准,把要观察的物体放到寻星镜的十字中间(是转动脚架,而不是寻星镜),到了中心后,观察主镜,你就会发现被观测物体老老实实地出现在主镜的视场中了,调节焦距就会变清楚。这就是因为光轴平行的原因。如果你看不见,还是说明光轴没调节好,或者移动的时候不小心动了寻星镜,只能耐心的调节了。
1. 折射式:使用方便,视野较大,星像明亮,但有色差,会降低分辨率,使用和维护比较方便。
2. 反射式:无色差,但彗差和像散较大,使得视野边缘像质变差;常用的有牛顿式反射镜,光学系统简单,同样的价格,能买到的反射镜口径最大,获得最强的集光力。但是,由于需要调节光轴,对于初级天文爱好者使用较为困难;主镜筒开放,与外界空气接触,气流干扰观测,而且容易腐蚀主反射镜的镀膜。
3. 折反射式(马卡):综合了折射镜和反射镜的优点:视野大、像质好、镜筒短、携带方便。有施密特-卡塞格林式和马克苏托夫-卡塞格林2种。但是,由于副反射镜挡住了部分入射光线,影响进光。
1. 口径:物镜的有效口径,在理论上决定望远镜的性能。口径越大,聚光本领越强,分辨率越高,可用放大倍数越大。
2. 集光力:聚光本领,望远镜接收光量与肉眼接收光量的比值。人的瞳孔在完全开放时,直径约7mm。70mm口径的望远镜,集光力是70/7=10倍。
3. 分辨率:望远镜分辨影像细节的能力。分辨率主要和口径有关。
4. 放大倍数:物镜焦距与目镜焦距的比值,如开拓者60/700天文望远镜,使用H10mm目镜,放大倍数=物镜焦距700mm/目镜焦距10mm=70倍;放大倍数变大,看到的影像也越大。
放大倍数不是越大越好,最大可用放大倍数一般不大于口径毫米数的1.5倍,超过最大有效放大倍数后,影像变大清晰度却不会再增加。
*短焦距镜(小焦比,焦比<=6):适合观测星云、寻找彗星;
*长焦距镜(大焦比,焦比>15):适合观测月亮和行星
更可以两头兼顾,很适合初学者。
7.极限星等:是望远镜所能观测到最暗的星等,主要和口径、焦比有关。正常视力的人,在黑暗、空气透明的场合最暗可看到6等星,而70mm口径望远镜的集光力是肉眼的100倍,能看到比6等星再暗五个星等的11等星。
1. 地平式:结构和使用简单,调节精度低,不能跟踪天体,适合初学者
2.赤道仪式:赤道仪在观测时用来抵消地球自转,跟踪天体运行;结构和使用复
杂,调节精度高;赤道仪有手动和电动,手动跟踪赤道仪适合专门的天文观测,
找天体目标,找到目标后能自动跟踪.爱好者经常用来天文跟踪摄影和观测研究,
国际几大品牌都是我国国内代工.
初学者熟悉地平式支架后,可以选择手动赤道仪;初次使用也许会觉得调整复杂,但熟悉后观测星空会轻松很多;业余爱好者学习天文摄影时,也常使用电动跟踪赤道仪(电导),但价格较贵。
白天可用望远镜观测远处的大楼,将大楼的轮廓线移到视野的1/4处,如果轮廓线上橙黄色或蓝紫色特别明显,或轮廓线弯曲得特别厉害,光学质量就很差;再观看远处的树叶,一般60mm口径的望远镜,能看清40米远处的树叶叶筋,看不清说明光学质量很差(博冠开拓者60/700 可以看清60米远的梧桐树叶筋);晚上观测星星时,如果看到星星带很明显的颜色,或是视野边缘的星星拖着尾巴,其长度达到星星大小的2倍,说明光学质量很差,不适合天文观测
*选择31.7mm(1.25英寸)大目镜接口才能获得更好的光学质量。
1.望远镜是一分价钱一分货,绝对不能贪图便宜买地摊货和小作坊厂家的产品。国内的一些知名望远镜品牌(如星林,MIDE,博冠、爱牧夫、天狼、晶华,星特朗等)的质量和信誉较好,有正规的销售点,可以现场自己挑选,对于100mm以下的望远镜,国内品牌的望远镜性价比相当不错了。
2.根据个人的经济能力,尽量选择口径大的望远镜;
对于初学者入门,一般的观星可选用7X50双筒望远镜,携带方便。条件较好的建议选60mm、70mm、80mm口径折射镜:
首先是携带、使用及维护方便,可以经常带出观测(100mm以上相对来说过重,携带很不容易;观看东西的多少取决于观测的次数而不是望远镜的口径);
其次即使在光害严重的城市,也能观看太阳黑子、月面和木星、土星等明亮天体
3.天文望远镜品牌众多,也各有优缺点。但这些都是我们所能承受的或不影响入门学习观测的。记住一点,十全十美的镜子不存在,选择适合自己的最重要。你花一年的时间选择买什么样的镜子,这样你就比别人少了一年观测学习的时间,对于镜子本身的使用和认识也落后了。我的意思是说,听别人说的再多,也比不上自己拿着镜看来的实惠。
1.绝对不能直接用望远镜观看太阳,观看太阳必须通过投影法或有专门滤光措施,否则会烧坏视网膜,而且会对主镜造成一定损害。
2.不要把望远镜当做玩具,望远镜是精密光学仪器,要细心使用和维护
3.不要认为用望远镜什么都能看到,通过望远镜确实能观看到肉眼不能分辨的天体和天体上的细节,但观看效果越好,价格也越高,没有十全十美的望远镜,选择适合自己的最重要;
4.对于每一台望远镜,都有它合适的放大倍数。超过这个倍数并不能增强分辨能力,反而会使物体变得很暗,难以看清。60mm~80mm口径的望远镜,合适的放大倍数应小于100倍,200倍的放大倍率几乎什么都看不到。
5.如果无法在夜空中识别五个以上的星座,就不要着急使用望远镜,因为无法寻找可观测的星星,就只能看月亮;
6.天文望远镜通常也可以观看风景或动植物,可以很容易得到比双筒望远镜更高的放大倍率。不过使用倍率应在100倍以下,20-50倍最合适。
1.倍率
透过天文望远镜看地上的风景或月亮,物体好像变的好近了,同时,也可以看见月亮表面许许多多的坑洞,这是因为望远镜有放大的功能。
望远镜的倍率是如何计算的呢?倍率是由物镜的焦距除以目镜的焦距。
目镜的焦距
在倍率的计算中,通常物镜的焦距是固定的,而变换不同的目镜,就可以使用多种不同的倍率观测星星季节。放大倍率越大,看到的范围就越小。
2.集光力
3. 分辨率
分辨率是刚好能把两个点区分开的最短距离。望远镜的分辨率大小以极限分辨角来表征。分辨角越小,分辨率越好。根据物理光学理论,入瞳为D的理想光学系统的极限分辨角为φ=1.22λ/D,所以望远镜的入瞳直径(一般是物镜口径)越大,分辨力越好。除了考虑望远镜本身的极限分辨角外,还要注意人眼了极限分辨角(约1度)的限制,望远镜的角放大率要足够大,防止人眼限制了其分辨力。
4. 极限星等
星等越大,代表星星越暗,一台天文望远镜能看到多暗的星星是有一定的限制,所以每台天文望远镜,都有这大自然一台望远镜的极限星等。譬如说,一台望远镜只能看到13等的星星,它就看不到15等的星星。
5.物镜
物镜直径越大,就能看到更暗的星等,小直径的物镜适合观测行星,对于不同的星体需采用不同口径的天文望远镜。
6 . 出瞳直径
望远镜的出瞳直径要与人眼的眼瞳匹配。人的眼瞳能在2mm至8mm的范围内变化,在晴朗的白天,人的眼瞳为2mm,出瞳直径D'=D/(Γ+1),其中Γ为视觉放大率,D为入瞳直径(物镜口径)。一味地提高放大率,出瞳直径减小,像面晃动明显,小过眼瞳时,视野反而会变暗。
主镜筒
主镜筒是观测星星的主要部件。
寻星镜
主镜筒通常都以数十倍以上的倍率观测星体。在找星星时,如果使用数十倍来找,因为视野小,上海天文台要用主镜筒将星星找出来,可没那么简单,因此我们就使用一支只有放大数倍的小望远镜,利用它具有较大视野的功能,先将要观测的星星位置找出来,如此就可以在主镜筒,以中低倍率直接观测到该星星。
目镜
如果一部天文望远镜缺少了目镜,就没有办法看星星。目镜的功用在于放大之用。通常一部望远镜都要配备低,中和高倍率奇观三种目镜。
赤道仪赤道仪是一种可以跟踪星星,长时间观测星星的装置。赤道仪有许多种形式,我们经常看到的是德国式的赤道仪。赤道仪分成赤经轴和赤纬轴,其中重要的是赤经轴。在使用上,必须先将赤经轴轴心对准天球北极点,当找到星星之后,开启追踪马达,锁住离合器,即可追踪星星。为了方便赤经轴对准北极星,北京天文馆在赤经轴中心装置了一支小望远镜,叫做极轴望远镜。在赤经和赤纬轴上,有大和小微调,它们的功用是在于找辅助找星星之用。
经纬台马达可以驱动赤经轴,寻找并以跟地球自转相同的角速度逆向转动,跟踪星星,将星体长时间保持在视野中观测。此外,也可以利用较快的速度寻找欲观测的星星,以及增减速上海气象来做天文摄影的功能。赤纬追踪马达的功用是当观测中的星体偏离视野中心,寻找星体和天文摄影时,做调整及修正之用。一般赤道仪应有赤经马达,若需要长时间的摄天文影,就同时需要赤经和赤纬马达。
三脚架台和脚架
赤道仪控制盒和电源
赤道仪要能运转,就必须要使用电源,驱动追踪马达工作。一般可携带型式的赤梅雨歌道仪,都要购置干电池或蓄电池,适合野外山区的使用。赤道仪的控制盒设计有许多种功能,如此才能观测星体,寻找星体和从事天文摄影等的需求。[1]
参考资料
- 1. ∧ 【天文望远镜】天文望远镜报价及图片大全-ZOL中关村在线ZOL中关村在线[引用日期2021-11-23]
没有评论:
发表评论